Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann N Y Acad Sci ; 1529(1): 101-108, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37715781

RESUMO

This study assessed the projected near-surface wind speed (SWS) changes and variability over the Iberian Peninsula for the 21st century. Here, we compared Coupled Model Intercomparison Project Phase 6 global climate models (GCMs) with a higher spatial resolution regional climate model (RCM; ∼20 km), known as WRF-CESM2, which was created by a dynamic downscaling of the Community Earth System Model version 2 (CESM2) using the Weather Research and Forecasting (WRF) model. Our analysis found that the GCMs tended to overestimate observed SWS for 1985-2014, while the higher spatial resolution of the WRF-CESM2 did not improve the accuracy and underestimated the SWS magnitude. GCMs project a decline of SWS under high shared socioeconomic pathways (SSPs) greenhouse concentrations, such as SSP370 and SSP585, while an interdecadal oscillation appears in SSP126 and SSP245 for the end of the century. The WRF-CESM2 under SSP585 predicts the opposite increasing SWS. Our results suggest that 21st-century projections of SWS are uncertain even for regionalized products and should be taken with caution.


Assuntos
Cinarizina , Modelos Climáticos , Humanos , Vento , Incerteza , Tempo (Meteorologia) , Mudança Climática
2.
Sci Total Environ ; 871: 162092, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36775148

RESUMO

China has experienced a rapid expansion of human settlement in both urban and rural areas over the past three decades. Regarding the impacts on carbon storage, previous studies that only focus on certain ecosystems cannot reflect urban-rural disparities, resulting in the carbon storage changes in human settlement remaining unknown. In this study, we aimed to explore China's urban-rural disparities in human settlement expansion and direct impacts on carbon storage by using the big Earth data technology. The results showed that from 1990 to 2018, the total amount of China's human settlement expansion reached 175,703.80 km2, and the inner-city, peri-urban, and rural components accounted for 21.00 %, 20.18 %, and 58.82 %, respectively. Along with the general tendency of impervious surface area (ISA) growth, there was more soil organic carbon (SOC) (1254.33 TgC) being sealed beneath ISA (0-100 cm depth), compared to a huge reduction in vegetation biomass carbon (VBC) (91.44 TgC) during the study period. The results further indicated that the change density of either VBC or SOC presented a slightly rising trend along the urban-rural gradient, due to the increasingly common encroachment on vegetation and soil types with higher carbon content. We also found that socioeconomic drivers had a greater influence in urban areas than rural areas, and the related correlation exhibited a descending trajectory in both urban and rural areas. There is thus an urgent need to preserve lands with abundant carbon storage and contain the waste of land resources in rural areas. All stakeholders should pay more attention to concerted and targeted regulation policies for well-planned and eco-friendly human settlement expansion such as enhancing rural land use efficiency and promoting large-scale afforestation and continuous urban greening, which will be critical not only for guiding sustainable urbanization all over China but also for mitigating climate change for the entire world.


Assuntos
Carbono , Ecossistema , Humanos , Carbono/análise , Solo , Desenvolvimento Econômico , Urbanização , China
3.
Ann N Y Acad Sci ; 1518(1): 249-263, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36240009

RESUMO

We evaluate the performance of Coupled Model Intercomparison Project Phase 6 (CMIP6) models in simulating the observed global terrestrial near-surface wind speed (NSWS) and project its future changes under three different Shared Socioeconomic Pathways (SSPs). Results show that the CESM2 has the best ability in reproducing the observed NSWS trends, although all models examined are generally not doing well. Based on projections of CESM2, the global NSWS will decrease from 2021 to 2100 under all three SSPs. The projected NSWS declines significantly over the north of 20°N, especially across North America, Europe, and the mid-to-high latitudes of Asia; meanwhile, it increases over the south of 20°N. Under SSP585, there would be more light-windy days and fewer strong-windy days than those under SSP245, which leads to a significant global NSWS decline. Robust hemispheric-asymmetric changes in the NSWS could be due to the temperature gradient in the two hemispheres under global warming, with -1.2%, -3.5%, and -4.1% in the Northern Hemisphere, and 0.8%, 1.0%, and 1.5% in the Southern Hemisphere, for the near-term (2021-2040), mid-term (2041-2060), and long-term (2081-2100), respectively.


Assuntos
Aquecimento Global , Vento , Humanos , Previsões , Temperatura , Europa (Continente) , Mudança Climática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...